On the Gait Robustness of Passive Dynamic Robots, and a Novel Variable Stiffness Series Elastic Actuator

February 15, 2008

Ivar Thorson

Nagoya University

Today's Presentation

Outline:

- 1. Introduction to Passive-Dynamic Robots
- 2. Two Definitions of Gait Robustness
- 3. Custom Simulator
- 4. Data, Conclusions
- 5. Novel Variable Stiffness Actuator
- 6. Conclusions, Future Research

What is passive dynamic walking?

Stable limit cycle exists...but how stable?

- Three hard problems: Desigining mechanics, controllers, and actuation
- Today's Questions:
 - 1. どのように受動歩行ロボットのロバスト性を測るか
 - 2. どのようなアクチュエータが受動歩行ロボットに適しているか

The difference between stability and robustness

Differential property vs. Disturbance Rejection:

- *Gait Stability* means "It keeps walking."
- Gait Robustness means "It can withstand this much disturbance and keep walking"

Stability is often analyzed using the spectral radius of the Jacobian of the Poincare Map

- This is fine for stability
- But does not correlate well with robustness

Prior Research

"Real Robustness" is size of random disturbance per step such that it falls in an average of 100 steps

Source: "A Disturbance Rejection Measure for Limit Cycle Walkers: The Gait Sensitivity Norm" by D. Hobbelen, M. Wisse

What metric does this thesis propose?

- Any momentary disturbance can be represented as a change in generalized momenta
- We propose using the length of the smallest deterministic disturbance of generalized momenta that moves the system from the limit cycle to an unstable region.

Above: Post-heelstrike instant generalized momenta. Red dot is limit cycle, green is basin of attraction, and yellow circle represents maximum

What does "length of the disturbance" mean?

We present two definitions of gait robustness using two different definitions of length:

- 1. Length is measured as the magnitude of the impulse. (r_{IDR} : Impulse Disturbance Rejection)
- 2. Length is measured using the metric tensor. (r_{EDR} : Energy Disturbance Rejection)

Mathematical Definition of *r*_{*IDR*}

The "Impulse Disturbance Rejection" radius r_{IDR} of a system with generalized momenta p is defined as

$$(x^*, y^*) = \arg \min \|p_x - p_y\|_2, x \in \mathbb{Q}_{NR}, y \in \mathbb{Q}_{LC}$$

$$\Delta p_{IDR} = x^* - y^*$$

$$r_{IDR} = \min \|\Delta p_{IDR}\|_2,$$

where \mathbb{Q} is the configuration space of the system, $\mathbb{Q}_{LC} \subseteq \mathbb{Q}$ are states passed through during a circuit of the limit cycle, and $\mathbb{Q}_{NR} \subseteq \mathbb{Q}$ are states which result in the system not returning to the limit cycle. The notation $(...)_x$ means evaluated at a point x.

Mathematical Definition of r_{EDR}

The "Energy Disturbance Radius" r_{EDR} is defined as the change of kinetic energy resulting from an impulse disturbance:

$$(x^*, y^*) = \arg\min(p_x - p_y)^T M^{-1}(p_x - p_y), x \in \mathbb{Q}_{NR}, y \in \mathbb{Q}_{LC}$$

$$\Delta p_{EDR} = x^* - y^*$$

$$r_{EDR} = \min \Delta p_{EDR}^T M^{-1} \Delta p_{EDR},$$

Here *M* is the inertial matrix (tensor) of the Lagrangian system. Since *M* is a metric tensor of a Riemannian space and *p* is a linear space, r_{EDR} is a coordinate invariant quantity. We could also have written $r_{EDR} = \Delta \dot{q} M \Delta \dot{q}$ if we wished to express r_{EDR} in terms of generalized velocities.

How do these correlate with real robustness to disturbances?

- They appear to correlate well
- Slightly underestimate real robustness because it uses the worst-case disturbance

What are the advantages of r_{IDR} and r_{EDR} ?

- r_{EDR} is coordinate invariant
- Both have clear physical meanings: "How hard can you bump the robot before it falls down?"
 - r_{IDR} measures change in momentum from bump
 - r_{EDR} measures change in kinetic energy from bump
- Deterministic, not stochastic
- Conservative, worst-case values that are useful for engineering and design

What are the disadvantages of r_{IDR} and r_{EDR} ?

- Very difficult to analytically determine r_{IDR} or r_{EDR} .
- However, we can measure it via simulation.
- For 2DOF models, computing r_{IDR} or r_{EDR} requires approximately 3 min.
- We will now introduce the simulator

Applications Places System 🞯 🔄 📶 😭 🖬 Terminal		🗖 Numerical	Sim 📑 🏟 💽	🛐 🗖 🗖 🗖 👘 🏟 🚼 Fri Feb 15, 12:45 PM 👔 😂
Numerical Simulation				
	File			
		Robots:		Object Properties:
	biped-torso-d=0	0.180	Δ	A : 0.63d0 B : 0.37d0 CONTROLLER : NIL DEBUG : NIL DT : 0.01d0 DTTRN : 1.d-6
7	biped-torso-mt	=0.000		
	biped-torso-mt	=0.010 =0.020		
	biped-torso-mt	=0.030		
		- Marcheneral (A)		
Λ	Consta	Destroy	[[G : 9.81d0
Λ Λ Λ		Destruy		IDR : 0.008609085155179049d0
		Objects in Simulati	on:	IDR-DIR : # «REAL-MATRIX 1 x 2 n 8.44066E-285212 INIT-GENMOMS : # «REAL-MATRIX 1 x 2 n 8.44069E-2 INIT-PHASE : # «STANDARD-GENERIC-FUNCTION PHASE-: INIT-STATE : # «REAL-MATRIX 1 x 4 n31526 0.21054 LAST-CONDITION : WALKED LC-MOMS : # «REAL-MATRIX 1 x 2 n 8.76754E-293389 LC-PHASE : # «STANDARD-GENERIC-FUNCTION PHASE-SI LC-STATE : # «REAL-MATRIX 1 x 4 n31526 0.21054
	[-]biped-torso-c	l=0.180		
	[-]biped-hip-spr	ing-k=2.100 o 200		
	- [-]biped-compa	ss-a=0.630		
			1	
	- N			
	Attach Search	Cancel Search	Edit Searcher	LINK-COLOR : (1.0 0.0 0.0) M : 0.2500
		- Automated Search		M + 0.2500 M + 0.500 OBJ-NAME : biped-compass-a=0.630 PAUSED : T PHASE : # <standard-generic-function phase-sing<br="">PHI : 0.05235987755982989d0 PREV-STEP-TIME : 2.4630857749687647d0 PROPS : NIL</standard-generic-function>
	find-lc-wide			
	find-lc.compas	s-biped	-	
	find-lc			
	109-3603-01			
tting object # <feet-biped {b665811}=""></feet-biped>				SEARCHER : NIL
using object # <feet-biped {b665811}=""></feet-biped>	Pause	Debug	Save Obj	STATE : # < REAL-MATRIX 1 x 4 n31250 0.18923 0
ing object: # <compass-biped {b665821}=""></compass-biped>	Boost	Baset Warmt	Beent To LC	STEP-LENGTH : 0.5197589092937164d0
using object # <compass-biped {b665821}=""></compass-biped>		neset wurst		STEP-TIME : 0.615771443742184d0
ing object # <compass-biped {b665821}=""></compass-biped>	Device: All	Depart All		STEPS : 4.0
ing object: # <torso-biped {ca83539}=""></torso-biped>	Pause All	Keset All	openal on/off	
ing object: # <hip-spring-biped {b665801}=""></hip-spring-biped>	'(1.0 0.0 0.0b			Set!
ing object: # <hip-spring-biped {b665801}=""></hip-spring-biped>				
ing object: # <compass-biped {coeae01}=""></compass-biped>				Eval
ing object: # <compass-biped {cofaf21}=""></compass-biped>			Global Pause:0	Off FPS:432 OpenGL:On

Custom Rigid Body Simulator

Simulator Features:

- Simulates multiple robots simultaneously
- Robots can be edited in real time
- Measures r_{IDR} , r_{EDR} automatically
- Draws PNG files of robots
- Easy saving and loading of various parameters, models
- Automatically logs and plots various quantities
- Automatically discovers limit cycle
- Plots limit cycle bifurcations
- Fast simulation using Runge-Kutta numerical integration, secant method zero finding
 - Real-time debugging, compiling and interpretation of code via REPL

Automatically maps (p_1, p_2) plane, measures stability

Yellow is stable

Cotangent Plane Map of biped-compass-a=0.520 phi=03.000

Experiment: How do r_{IDR} and r_{EDR} vary with the slope?

What about using these metrics to design a robot?

Let's consider the effects of several design parameters!

Summary of r_{IDR} **Data**

ロバスト性 vs. 無次元化した歩行速度

 r_{IDR}^{2} vs. Froude Number for many types of robots

Conclusions from Data

We can make some simple conclusions

- Parameters which affect natural leg swing period have a great effect on robustness (e.g. hip springs)
- Larger feet are always beneficial
- Unlike what prior research has shown, torsos don't always improve robustness
- There seems to be an optimal hip spring stiffness for a given forward speed

Is there an optimal hip spring stiffness for a given forward speed?

- For different slopes, optimally robust hip spring stiffness are different
- If we could change stiffness, we could maximize natural mechanical gait robustness
- Next, we will present such a variable stiffness mechanism

Introducing a New Actuator: The VSSEA

VSSEA: Variable Stiffness Series Elastic Actuator

- An actuatoor which does not destroy passive dynamic behavior
- Two nonlinear springs act as variable linear spring
- Two motors, (A) adjusts position, (D) adjusts stiffness

VSSEA photos

Conclusions

We have designed, implemented, and presented:

- Two new definitions of gait robustness: r_{IDR} and r_{EDR}, applicable to systems with/without control. Latter is coordinate invariant.
- A new simulator to measure these quantities
- A new actuator which can
 - Provide power without overwhelming natural dynamics
 - Adapt its stiffness to an operating environment to maximize gait robustness

Future Research

- Construct the proposed biped using the developed method
- Investigate which has better correlation to real-life robustness, r_{IDR} or r_{EDR} ?
- Improve the engineering of the VSSEA to make it lighter, have less friction
- Consider using theory of manifolds and numerical optimization to design controllers for these bipeds

Questions?

What is the state of the art for bipedal robots?

Stiffly-actuated, position-controlled robots

- Strengths: General method, easily understood
- Weaknesses: Trying to constraining position via control is bad for efficiency, poor shock tolerance, dangerous, can't run.

Asimo (Honda)

HRP-2 (AIST)

QRIO (Sony)

How can we improve on existing robots?

We advocate basing robots on passive dynamic walking and running

- Strengths: Energy efficiency, natural looking motion, good shock tolerance, safer
- Weaknesses: Hard to analyze robustness to disturbances, hard to design controllers, hard to actuate. (Can we solve these problems?)

Cornell Biped

Monopod-II (McGill)

Denise (Delft U.)

How much more efficient are Passive Dynamic robots?

Cost of Transport: $c_t = \frac{energy}{weight \cdot distance}$. c_{et} はバッテリーあるいはmetabolicの消費したエネルギー, c_{mt} は機械的な 仕事

Name	Mfg	c_{et}	c_{mt}	Passive-Dynamic?
Asimo	Honda	3.2	1.6	no
Denise	Delft	5.3	0.08	yes
Monopod II	McGill	0.22	-	yes
Cornell Biped	Cornell	0.20	0.055	yes
Human Walking	God	0.20	0.05	-
Dynamite	McGeer	-	0.04	yes

Reasons for high c_{et} of passive-dynamic robots are thought to be mostly engineering-related problems.

Turning now to the other weaknesses of Passive Dynamic Bipeds

- We can now calculate robustness and design theoretical bipeds
- But what about the practical requirements of control and actuation?
- How do we actuate these robots without destroying their passive dynamics?

Design Concept for a Biped Based on Passive-Dynamics

- Mechanical robustness can be examined separately by locking the motors
- Stiffness tunable to match forward speed
- Mechanical robustness reduces control complexity

Automatically discovers limit cycle

State Map for biped-compass-a=0.5.secs-05

Automatically logs and plots various quantities

Time vs. State for biped-compass-a=0.5.secs-05

Plots limit cycle bifurcations

Effect of Varying Lower Leg Length

Greatly affects robustness. This is the only graph where r_{IDR} and r_{EDR} do not agree.

Effect of Mh

Little effect on robustness.

Great effect on robustness, peaking behavior interesting.

Slightly unphysical, but improves robustness

Effect of Arc Feet

Increasing arc radius improves speed and robustness

Effect of Torso

Adding a torso made robot less robust

What about varying more than one parameter?

Let's pick some design parameters randomly and evolve a biped

 $r_{\mbox{\scriptsize IDR}}$ vs. Froude Number for three Generations of Compass Bipeds

Summary of r_{EDR} **Data**

VSSEA schematics

VSSEA schematics

– p. 43

VSSEA schematics

– p. 44

...or total kinetic energy.

Bifurcation of Total Kinetic Energy